All Possible Straights In Poker

Posted on by admin

See also Poker probability (Texas hold 'em) and Poker probability (Omaha) for probabilities specific to those games. In poker, the probability of each type of 5-card hand can be computed by calculating the proportion of hands of that type among all possible hands. 1 Frequency of 5-card poker hands 1.1 Derivation of frequencies of 5-card poker hands 2 Frequency of 7-card poker. The highest possible Straight is A-K-Q-J-10 (also called “Broadway”). Straight combinations go all the way down to A-2-3-4-5, which is known as the “Wheel”. The following chart enumerates the (absolute) frequency of each hand, given all combinations of 5 cards randomly drawn from a full deck of 52 without replacement. Wild cards are not considered. For a given set of ranks, there are 4 choices for each card except we cannot choose all in the same suit. Hence, there are 1277(4 5-4) = 1,302,540 high card hands. If we sum the preceding numbers, we obtain 2,598,960 and we can be confident the numbers are correct. Here is a table summarizing the number of 5-card poker. A straight flush is a straight and a flush that isn’t ace high. Straight flushes can be anywhere from king high down to five high. Two examples of straight flushes are king of spades, queen of spades, jack of spades, ten of spades, and nine of spades or the five of hearts, four.

For a great training video on poker combinatorics, check out this poker combos video.

'Combinatorics' is a big word for something that isn’t all that difficult to understand. In this article, I will go through the basics of working out hand combinations or 'combos' in poker and give a few examples to help show you why it is useful.

Oh, and as you’ve probably noticed, 'combinatorics', 'hand combinations' and 'combos' refer to the same thing in poker. Don’t get confused if I use them interchangeably, which I probably will.

What is poker combinatorics?

Poker combinatorics involves working out how many different combinations of a hand exists in a certain situation.

For example:

  • How many ways can you be dealt AK?
  • How many ways can you be dealt 66?
  • How combinations of T9 are there on a flop of T32?
  • How many straight draw combinations are there on a flop of AT7?

Using combinatorics, you will be able to quickly work these numbers out and use them to help you make better decisions based on the probability of certain hands showing up.

Poker starting hand combinations basics.

  • Any two (e.g. AK or T5) = 16 combinations
  • Pairs (e.g. AA or TT) = 6 combinations

If you were take a hand like AK and write down all the possible ways you could be dealt this hand from a deck of cards (e.g. A K, A K, A K etc.), you would find that there are 16 possible combinations.

See all 16 AK hand combinations:

Similarly, if you wrote down all the possible combinations of a pocket pair like JJ (e.g. JJ, JJ, JJ etc.), you would find that there are just 6 possible combinations.

See all 6 JJ pocket pair hand combinations:

So as you can see from these basic starting hand combinations in poker, you’re almost 3 times as likely to be dealt a non-paired hand like AK than a paired hand. That’s pretty interesting in itself, but you can do a lot more than this…

Note: two extra starting hand combinations.

As mentioned above, there are 16 combinations of any two non-paired cards. Therefore, this includes the suited and non-suited combinations.

Here are 2 extra stats that give you the total combinations of any two suited and any two unsuited cards specifically.

  • Any two (e.g. AK or 67 suited or unsuited) = 16 combinations
  • Any two suited (AKs) = 4 combinations
  • Any two unsuited (AKo) = 12 combinations
  • Pairs (e.g. AA or TT) = 6 combinations

You won’t use these extra starting hand combinations nearly as much as the first two, but I thought I would include them here for your interest anyway.

It’s easy to work out how there are only 4 suited combinations of any two cards, as there are only 4 suits in the deck. If you then take these 4 suited hands away from the total of 16 'any two' hand combinations (which include both the suited and unsuited hands), you are left with the 12 unsuited hand combinations. Easy.

Fact: There are 1,326 combinations of starting hands in Texas Hold’em in total.

Working out hand combinations using 'known' cards.

Let’s say we hold KQ on a flop of KT4 (suits do not matter). How many possible combinations of AK and TT are out there that our opponent could hold?

Unpaired hands (e.g. AK).

How to work out the total number of hand combinations for an unpaired hand like AK, JT, or Q3.

Method: Multiply the numbers of available cards for each of the two cards.
Word equation: (1st card available cards) x (2nd card available cards) = total combinations

Example.

If we hold KQ on a KT4 flop, how many possible combinations of AK are there?

There are 4 Aces and 2 Kings (4 minus the 1 on the flop and minus the 1 in our hand) available in the deck.

C = 8, so there are 8 possible combinations of AK if we hold KQ on a flop of KT4.

Paired hands (e.g. TT).

How to work out the total number of hand combinations for an paired hand like AA, JJ, or 44.

Method: Multiply the number of available cards by the number of available cards minus 1, then divide by two.
Word equation: [(available cards) x (available cards - 1)] / 2 = total combinations

Example.

How many combinations of TT are there on a KT4 flop?

Well, on a flop of KT4 here are 3 Tens left in the deck, so…

C = 3, which means there are 3 possible combinations of TT.

Thoughts on working out hand combinations.

Working out the number of possible combinations of unpaired hands is easy enough; just multiply the two numbers of available cards.

Working out the combinations for paired hands looks awkward at first, but it’s not that tricky when you actually try it out. Just find the number of available cards, take 1 away from that number, multiply those two numbers together then half it.

Note: You’ll also notice that this method works for working out the preflop starting hand combinations mentioned earlier on. For example, if you’re working out the number of AK combinations as a starting hand, there are 4 Aces and 4 Kings available, so 4 x 4 = 16 AK combinations.

Why is combinatorics useful?

Because by working out hand combinations, you can find out more useful information about a player’s range.

For example, let’s say that an opponents 3betting range is roughly 2%. This means that they are only ever 3betting AA, KK and AK. That’s a very tight range indeed.

Now, just looking at this range of hands you might think that whenever this player 3bets, they are more likely to have a big pocket pair. After all, both AA and KK are in his range, compared to the single unpaired hand of AK. So without considering combinatorics for this 2% range, you might think that the probability break-up of each hand looks like this:

  • AA = 33%
  • KK = 33%
  • AK = 33%

…with the two big pairs making up the majority of this 2% 3betting range (roughly 66% in total).

However, let’s look at these hands by comparing the total combinations for each hand:

  • AA = 6 combinations (21.5%)
  • KK = 6 combinations (21.5%)
  • AK = 16 combinations (57%)

So out of 28 possible combinations made up from AA, KK and AK, 16 of them come from AK. This means that when our opponent 3bets, the majority of the time he is holding AK and not a big pocket pair.

Now obviously if you’re holding a hand like 75o this is hardly comforting. However, the point is that it’s useful to realise that the probabilities of certain types of hands in a range will vary. Just because a player either has AA or AK, it doesn’t mean that they’re both equally probable holdings - they will actually be holding AK more often than not.

Analogy: If a fruit bowl contains 100 oranges, 1 apple, 1 pear and 1 grape, there is a decent range of fruit (the 'hands'). However, the the fruits are heavily weighted toward oranges, so there is a greater chance of randomly selecting an orange from the bowl than any of the 3 other possible fruits ('AK' in the example above).

This same method applies when you’re trying to work out the probabilities of a range of possible made hands on the flop by looking at the number of hand combinations. For example, if your opponent could have either a straight draw or a set, which of the two is more likely?

Poker combinatorics example hand.

You have 66 on a board of A J 6 8 2. The pot is $12 and you bet $10. Your opponent moves all in for $60, which means you have to call $50 to win a pot of $82.

You are confident that your opponent either has a set or two pair with an Ace (i.e. AJ, A8, A6 or A2). Don’t worry about how you know this or why you’re in this situation, you just are.

According to pot odds, you need to have at least a 38% chance of having the best hand to call. You can now use combinatorics / hand combinations here to help you decide whether or not to call.

Poker combinatorics example hand solution.

First of all, let’s split our opponent’s hands in to hands you beat and hands you don’t beat, working out the number of hand combinations for each.

Adding them all up…

All possible straights in poker play

Seeing as you have the best hand 79% of the time (or 79% 'equity') and the pot odds indicate that you only need to have the best hand 38% of the time, it makes it +EV to call.

So whereas you might have initially thought that the number of hands we beat compared to the number of hands we didn’t beat was close to 50/50 (making it likely -EV to call), after looking at the hand combinations we can see that it is actually much closer to 80/20, making calling a profitable play.

Being able to assign a range to your opponent is good, but understanding the different likelihoods of the hands within that range is better.

Poker combinatorics conclusion.

Working out hand combinations in poker is simple:

  • Unpaired hands: Multiply the number of available cards. (e.g. AK on an AT2 flop = [3 x 4] = 12 AK combinations).
  • Paired hands: Find the number of available cards. Take 1 away from that number, multiply those two numbers together and divide by 2. (e.g. TT on a AT2 flop = [3 x 2] / 2 = 3 TT combinations).

By working out hand combinations you can gain a much better understanding about opponent’s hand ranges. If you only ever deal in ranges and ignore hand combinations, you are missing out on useful information.

It’s unrealistic to think that you’re going to work out all these hand combinations on the fly whilst you’re sat at the table. However, a lot of value comes from simply familiarizing yourself with the varying probabilities of different types of hands for future reference.

All Possible Straights In Poker

For example, after a while you’ll start to realise that straight draws are a lot more common than you think, and that flush draws are far less common than you think. Insights like these will help you when you’re faced with similar decisions in the future.

The next time you’re doing some post session analysis, spend some time thinking about combinatorics and noting down what you find.

Poker combinatorics further reading.

Hand combinations in poker all stem from statistics. So if you’re interested in finding out more about the math side of things, here are a few links that I found helpful:

  • Combinations video - Youtube (all the stuff on this channel is awesome)

If you’re more interested in finding out more about combinations in poker only, here are a few interesting reads:

Go back to the awesome Texas Hold'em Strategy.

Comments

In the standard game of poker, each player gets5 cards and places a bet, hoping his cards are 'better'than the other players' hands.

The game is played with a pack containing 52 cards in 4 suits, consisting of:

13 hearts:
13 diamonds
13 clubs:
13 spades:

♥ 2 3 4 5 6 7 8 9 10 J Q K A
♦ 2 3 4 5 6 7 8 9 10 J Q K A
♣ 2 3 4 5 6 7 8 9 10 J Q K A
♠ 2 3 4 5 6 7 8 9 10 J Q K A

The number of different possible poker hands is found by counting the number of ways that 5 cards can be selected from 52 cards, where the order is not important. It is a combination, so we use `C_r^n`.

The number of possible poker hands

`=C_5^52=(52!)/(5!xx47!)=2,598,960`.

Royal Flush

The best hand (because of the low probability that it will occur) is the royal flush, which consists of 10, J, Q, K, A of the same suit. There are only 4 ways of getting such a hand (because there are 4 suits), so the probability of being dealt a royal flush is

`4/(2,598,960)=0.000 001 539`

Straight Flush

The next most valuable type of hand is a straight flush, which is 5 cards in order, all of the same suit.

For example, 2♣, 3♣, 4♣, 5♣, 6♣ is a straight flush.

For each suit there are 10 such straights (the one starting with Ace, the one starting with 2, the one starting with 3, ... through to the one starting at 10) and there are 4 suits, so there are 40 possible straight flushes.

All Possible Straights In Poker Game

The probability of being dealt a straight flush is

`40/(2,598,960)=0.000 015 39`

[Note: There is some overlap here since the straight flush starting at 10 is the same as the royal flush. So strictly there are 36 straight flushes (4 × 9) if we don't count the royal flush. The probability of getting a straight flush then is 36/2,598,960 = 0.00001385.]

The table below lists the number ofpossible ways that different types of hands can arise and theirprobability of occurrence.

Ranking, Frequency and Probability of Poker Hands

HandNo. of WaysProbabilityDescription
Royal Flush

4

0.000002

Ten, J, Q, K, A of one suit.
Straight Flush

36

0.000015

A straight is 5 cards in order.
(Excludes royal and straight flushes.)
An example of a straight flush is: 5, 6, 7, 8, 9, all spades.
Four of a Kind

624

0.000240

Example: 4 kings and any other card.
Full House

3,744

0.001441

3 cards of one denominator and 2 cards of another. For example, 3 aces and 2 kings is a full house.
Flush

5,108

0.001965

All 5 cards are from the same suit.
(Excludes royal and straight flushes)
For example, 2, 4, 5, 9, J (all hearts) is a flush.
Straight

10,200

0.003925

The 5 cards are in order.
(Excludes royal flush and straight flush)
For example, 3, 4, 5, 6, 7 (any suit) is a straight.
Three of a Kind

54,912

0.021129

Example: A hand with 3 aces, one J and one Q.
Two Pairs

123,552

0.047539

Example: 3, 3, Q, Q, 5
One Pair

1,098,240

0.422569

Example: 10, 10, 4, 6, K
Nothing

1,302,540

0.501177

Example: 3, 6, 8, 9, K (at least two different suits)

Question

All Possible Straights In Poker Cheat

The probability for a full house is given above as 0.001441. Where does this come from?

Answer

Explanation 1:

Probability of 3 cards having the same denomination: `4/52 xx 3/51 xx 2/50 xx 13 = 1/425`.

(There are 13 ways we can get 3 of a kind).

The probability that the next 2 cards are a pair: `4/49 xx 3/48 xx 12 = 3/49`

(There are 12 ways we can get a pair, once we have already got our 3 of a kind).

The number of ways of getting a particular sequence of 5 cards where there are 3 of one kind and 2 of another kind is:

`(5!)/(3!xx2!)=10`

All Possible Straights In Poker Like

So the probability of a full house is

`1/425 xx 3/49 xx 10 ` `= 6/(4,165)` `=0.001 440 6`

Explanation 2:

Number of ways of getting a full house:

`(C(13,1)xxC(4,3))` `xx(C(12,1)xxC(4,2))`

`=(13!)/(1!xx12!)` `xx(4!)/(3!xx1!)` `xx(12!)/(1!xx11!)` `xx(4!)/(2!xx2!)`

`=3744`

Number of possible poker hands

All Possible Straights In Poker Games

`=C(52,5)` `=(52!)/(47!xx5!)` `=2,598,960`

So the probability of a full house is given by:

`P('full house')`

`='ways of getting full house'/'possible poker hands'`

`= (3,744)/(2,598,960)`

`=0.001 441`